Assessment Schedule - 2007

Statistics and Modelling: Use probability distribution models to solve straightforward problems (90646)

Evidence Statement

	Achievement Criteria	Qn No.	Evidence	Code	Judgement	Sufficiency
ACHIEVEMENT	Use probability distribution models to solve straight-forward problems.	1 2 3(a)	Poisson distribution $P(x < 2; \lambda = 1)$ = 0.7358 (GC: 0.73575) Binomial distribution $P(X > 2; n = 10, \pi = 0.05)$ = 1 - $P(X \le 2)$ = 1 - 0.98849 = 0.0116 (GC: 0.01151) Normal distribution $X \sim N(\mu = 12.4, \sigma = 3.0)$ $P(10 \le X \le 15)$ = $P(-0.8 \le Z \le 0.867)$ = 0.2881 + 0.307 = 0.5951 (GC: 0.59508)	A	Or equivalent. CRO Or equivalent. CRO Or equivalent. CRO Accept wrong or incorrect rounding.	Achievement: TWO of Code A No repeated distributions allowed as evidence.

	Achievement Criteria	Qn No.	Evidence	Code	Judgement	Sufficiency
ACHIEVEMENT WITH MERIT	Use probability distribution models to solve problems.	3(b) 3(c)	Inverse Normal distribution $P(X \ge k) = 0.02$ $Z = 2.054$ $k = 12.4 + 2.054 \times 3.0$ $= 18.56$ minutes (GC: 18.561) Normal distribution $N(\mu = 12.4, \sigma = 3.0)$ $P(X < 8)$ $= P(Z < -1.467)$ $= 0.5 - 0.4289$ $= 0.0711$ (GC: 0.07124) Binomial distribution $P(X = 2; n = 6, \pi = 0.0711)$ $= 0.0565$ (GC: 0.05661) Sum of two normally distributed independent random variables $T = X + Y$ $E(T) = 32.8 + 12.4 = 45.2$ min $\sigma(T) = \sqrt{11.9^2 + 3^2} = 12.2723$ $N(\mu = 45.2, \sigma = 12.2723)$ $P(X > 50)$ $= P(Z > 0.391)$ $= 0.5 - 0.1521$ $= 0.3479$ (GC: 0.34785)	A M or A M	Ignore units. Or equivalent. CRO Or equivalent. CRO Or equivalent. CRO	Merit: Achievement plus TWO of Code M OR THREE of Code M

	Achievement Criteria	Qn No.	Evidence	Code	Judgement	Sufficiency
ACHIEVEMENT WITH EXCELLENCE	Use and justify probability distribution models to solve complex problems.	3(e) 4(a)	Linear combination of independent random variables. $X \sim N(32.8 \text{ min, } 11.9 \text{ min})$ $Y \sim N(12.4 \text{ min, } 3.0 \text{ min})$ $C = \$50X + \$60Y$ $E(C) = 50 \times \frac{32.8}{60} + 60 \times \frac{12.4}{60}$ $= \$39.73$ $\sigma(C)$ $= \sqrt{50^2 \times \left(\frac{11.9}{60}\right)^2 + 60^2 \times \left(\frac{3.0}{60}\right)^2}$ $= \$10.36$ $P(X > 45)$ $= P(Z > 0.509)$ $= 0.5 - 0.1946$ $= 0.3054$ (GC: 0.30549) Poisson distribution • The occurrences of 'slow' callouts are at random. • The occurrence of 'slow' callouts are independent. • 'Slow' callouts can not occur simultaneously. • The probability of a 'slow' callout occurring is proportional to the size of the time interval. Inverse Poisson distribution $P(X = 0) = 1 - 0.28 = 0.72$ $e^{-\lambda} = 0.72$ $\lambda = 0.3285$	AME E	Require evidence of linear combination used. Or equivalent. Or equivalent Need TWO conditions listed with 'slow' callout mentioned in at least one. Or equivalent At least 2sf.	Excellence: Merit plus TWO of Code E

Judgement Statement — 2007

Achievement	Achievement with Merit	Achievement with Excellence	
Use probability distribution models to solve straightforward problems.	Use probability distribution models to solve problems.	Use and justify probability distribution models to solve complex problems.	
2 × A	Achievement plus 2 × M or	Merit plus 2 × E	
No repeated distributions	$3 \times M$		

The following Mathematics specific marking conventions may also have been used when marking this paper:

- Errors are circled.
- Omissions are indicated by a caret (A).
- NS may have been used when there was not sufficient evidence to award a grade.
- CON may have been used to indicate 'consistency' where an answer is obtained using a prior, but incorrect answer and NC if the answer is not consistent with wrong working.
- CRO is used when the 'correct answer only' is given and the assessment schedule indicates that more evidence was required.
- # may be used when a correct answer is obtained but then further (unnecessary) working results in an incorrect final answer being offered.
- RAWW indicates right answer, wrong working.
- **R** for 'rounding error' and **PR** for 'premature rounding' resulting in a significant round-off error in the answer (if the question required evidence for rounding).
- U for incorrect or omitted units (if the question required evidence for units).
- MEI may have been used to indicate where a minor error has been made and ignored.